Šī lapa no BGA wiki tiek parādīta angļu valodā, jo jūsu valodā vēl nav satura. Jūtieties brīvi to radīt to!
For the rules of piraten kapern, see GameHelpPiratenKapern
Probabilities
Binomial formula
n! × pᵏ(1 − p)ⁿ⁻ᵏ k!(n-k)!
n: number of trails (dice thrown) k: number of successes (dice with a face value)p: probability of success (of a die face value)
Example
Probability of throwing 3 with 5 dice:
5! × (⅙)³ × (1 − ⅙)⁵⁻³ 3!(5-3)!
= 5×4×3×2×1 × (⅙)³ × (⅚)² 3×2×1 × 2×1
= 10 × (⅙)³ × (⅚)²≈ 0.0321 or 3.21%
2 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)² | ≈ 69.4% |
| Probability of one skull | P(X = 1) = 2 × (⅙) × (⅚) | ≈ 27.8% |
| Probability of two skulls | P(X = 2) = (⅙)² | ≈ 2.78% |
8 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)⁸ | ≈ 23.3% |
| Probability of one skull | P(X = 1) = 8 × (⅙) × (⅚)⁷ | ≈ 37.2% |
| Probability of two skulls | P(X = 2) = 28 × (⅙)² × (⅚)⁶ | ≈ 26.0% |
| Probability of three skulls | P(X = 3) = 56 × (⅙)³ × (⅚)⁵ | ≈ 10.4% |
| Probability of four skulls | P(X = 4) = 70 × (⅙)⁴ × (⅚)⁴ | ≈ 2.60% |
| In words | In maths | Percentage |
|---|---|---|
| Probability of one or more skulls | P(X ≥ 1)
= 1 − P(X = 0) = 1 − (⅚)⁸ |
≈ 76.7% |
| Probability of two or more skulls | P(X ≥ 2)
= 1 − [ P(X = 0) + P(X = 1) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ ] |
≈ 39.5% |
| Probability of three or more skulls | P(X ≥ 3)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ ] |
≈ 13.5% |
| Probability of four or more skulls | P(X ≥ 4)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ + 56 × (⅙)³ × (⅚)⁵ ] |
≈ 3.07% |
Šī lapa nāk no BGA wiki, un to rakstīja BGA spēlētāju kopiena. Jūties brīvi to rediģēt!

